## תאורת מנהרות בעידן הלדים עקרונות מערכות בקרה רציפות

אינג' דוד תורג'מן – סיטילייט הנדסה David@citylight.co.il 052-2587602

## **Spatial adaptation**



## **Temporal adaptation**



| ~3500 cd/m²       | ~200 cd/m²     | ~6 cd/m²     |
|-------------------|----------------|--------------|
| 1500 – 6000 cd/m² | 50 – 500 cd/m² | 2 – 10 cd/m² |

### Topology of a one-way tunnel





## Safe Stopping Distance (SSD)

### **Point of Attention**

The driver looks ahead to a point at a distance which is equal to his stopping distance





• On wet pavement

$$SSD = \frac{Distance}{to \ react} + \frac{Distance}{to \ brake}$$

## Safe Stopping Distance (SSD)

### **Stopping distance**

$$SD = u.t_0 + \frac{u^2}{2.g.(f \pm s)}$$

Reaction + Braking

- u = traffic speed [m/sec]
- $t_o$  = reaction time (by default = 1 sec)
- g = gravity acceleration
- f = friction coefficient tire-pavement (**wet pavement**)
- s = gradient of the road [%]



## Safe Stopping Distance (SSD)

### **Stopping distance**



## **Threshold and Transition zone**





## **Interior zone**





## Exit zone





## Day and night variations



## **Tunnel lighting Standards over the world**

- International reference: CIE 88:2004 Guide for the Lighting of Road Tunnels and Underpasses
- Europe: CEN/CR 14380:2003 Lighting Applications Tunnel Lighting National Standards: NBN, AFNOR, NSVV, BS, DIN, NEN... BS5489-2
- USA & Canada: IES RP-8-18 (previously in RP-22-11 Tunnel Lighting)
- Australia/New-Zealand: AS/NZS 1158.5:2014 Lighting for roads and public spaces – Part 5: Tunnels and underpasses
- Asia: mostly application of CIE 88:2004



## Symmetrical Lighting (SYM)

Flux sent symmetrically in backward and forward directions





$$\frac{L}{E_v} \le 0.2$$

## Symmetrical Lighting (SYM)



#### Transversal view



 $\leftarrow$  Across tunnel section  $\rightarrow$ 

- Well adapted to high density traffic
- Versatile regarding luminaires location
- Good lighting of walls possible

## Symmetrical Lighting (SYM)



## **Counter-Beam Lighting (CBL)**

Main beam sent in opposite direction to the traffic





Obstacles made visible by negative contrast

$$\frac{L}{E_{v}} \ge 0.6$$

## L<sub>seq</sub> example

**CBL:** 
$$L_{th} = \frac{554}{\frac{1}{(-0.28)} \left(\frac{0.2}{\pi \cdot 0.6} - 1\right) - 1} = 253 \ cd/m^2$$

SYM: 
$$L_{th} = \frac{554}{\frac{1}{(-0.28)} \left(\frac{0.2}{\pi \cdot 0.2} - 1\right) - 1} = 386 \ cd/m^2$$



$$L_m = (0.8 \cdot 200 + 100 + 183)/0.8 \cdot 1 = 554 \ cd/m^2$$

## **Entrance: Threshold and Transition zones**

### L<sub>th</sub> – Visual tasks (given a max speed)

- Obstacles detected at SD from tunnel entrance
- Allow the driver to react in time

### L<sub>th</sub> and L<sub>tr</sub> – Adaptation phenomena

- Spatial adaptation
- Temporal Visual Adaptation (high level  $\rightarrow$  low level)





## **Entrance: Threshold and Transition zones**



## **Interior zone – Long tunnels**

### Luminance in function of traffic flow and stopping distance





| Lumi    | Luminance in long tunnels (cd/m <sup>2</sup> ) |                    |  |  |
|---------|------------------------------------------------|--------------------|--|--|
| SSD (m) | Low traffic flow                               | Heavy traffic flow |  |  |
| 160 m   | 6                                              | 10                 |  |  |
| 60 m    | 3                                              | 6                  |  |  |
|         |                                                |                    |  |  |

| Traffic<br>flow * | One way<br>traffic | Two way<br>traffic |
|-------------------|--------------------|--------------------|
| High              | > 1500             | > 400              |
| Low               | < 500              | < 100              |

\* peak hour traffic, vehicles/hour/lane

## Exit zone

### **Increase of luminance in function of interior luminance level and stopping distance**



The daytime luminance in the exit zone:

- increases over a length equal to the SDD
- from the level of the interior zone to 5 times that level
- 20 m from the exit portal





## Luminance uniformity and glare restriction

### **Uniformity on road surface**

- Overall uniformity:  $U_o \ge 0.4$  (whole carriageway)
- Longitudinal uniformity:  $UI \ge 0.6$  (axis of each lane)

### **Uniformity on walls**

• Overall uniformity: U<sub>o</sub> ≥ 0.4

### **Disability glare restriction**

Threshold increment: TI ≤ 15 %
 In all zones (except Exit)









## **Night Lighting**

• Tunnel part of an illuminated road:





Continuity: Luminance in tunnel ≥ Luminance of approaching road

• Tunnel part of an unilluminated road:





Minimum: Luminance in tunnel  $\geq$  1 cd/m<sup>2</sup>, with U<sub>o</sub>  $\geq$  40% and UI  $\geq$  60%

## Zones and types of lighting

| Туре | Entrance<br>lighting | Base lighting | Exit lighting |
|------|----------------------|---------------|---------------|
| SYM  | V                    | V             | V             |
| CBL  | V                    | X             | V             |



## **Base lighting – Extensive symmetrical**





- Higher spacing, optimum lumen package
   → Lower quantity of luminaires
- Lower visual comfort and guidance
- Flicker restriction: Avoid 4 Hz < f < 11 Hz
  - Negligible if f < 2.5 Hz or if f > 15 Hz



## **Base lighting – Continuous line symmetrical**



- Low Luminance and long light source
   → Comfortable solution
- Continuous or nearly continuous row of luminaires
   → Excellent visual guidance
- Higher quantities of luminaires





## **Lighting Control**

### To follow changes of adaptation luminance (daylight conditions in access zone)

- Weather conditions: clear, overcast...
- Position of the sun
- Daily, seasonal...





June

Height

**Lighting Control** 









## **Lighting Control**

Continuous monitoring of luminance in access zone

- Adaptation of reinforcement lighting to the actual value of access luminance
  - by switching ON/OFF (simple control)
  - by continuous dimming (advanced control)
- Keep  $L_{th}/L_{20} > k$
- Luminancemeter at SSD before tunnel portal



## **Classical control: Switching Steps**

### **Typically 3 to 5 reinforcement stages + Day + Night**

|    | Stage   | Reinforcement | Interior lighting |
|----|---------|---------------|-------------------|
| *  | Stage 1 | 100%          | 100%              |
| Ž  | Stage 2 | 75%           | 100%              |
| 20 | Stage 3 | 50%           | 100%              |
|    | Stage 4 | 25%           | 100%              |
|    | Day     | 0%            | 100%              |
|    | Night   | 0%            | 50%-25%           |

#### **Technology limitations**

- "Classical" switching ON/OFF (HID)
- Bi-power control gear (50% flux)
- Ignition and extinction waiting time
- Only group luminaires

management

## **Classical control: Switching Steps**

### **ON/OFF** switching cycles for reinforcement lighting stages



## **Classical control: Switching Steps**

### Whole tunnel view



Distance from tunnel portal [m]

## **Classical control: Switching Steps**

4 switching stages (100% - 50% - 25% - 12.5%)



## **Optimizing Lighting Management**

### **Continuous dimming removes overlighting**

When 60% required  $\rightarrow$  60% of L<sub>th</sub> is provided



## **Optimizing Lighting Management**

Example: short tunnel (80 m), L<sub>th</sub> = 80 cd/m<sup>2</sup> (OMNIstar, ContiLED)

```
HID 4 stages (100%, 50%, 25%, 12.5%): 36459 kWh

-16%

LED 4 stages (100%, 50%, 25%, 12.5%): 30501 kWh

-30%

8 stages: 25306 kWh

-32%

10 stages (each 10%): 24631 kWh

-37%

20 stages (each 5%): 22862 kWh
```

## Using new potential

### **Traffic speed management**

 $L_{th}$  varies with traffic speed  $\rightarrow$  dynamic adaptation possible

- Dynamic speed limitation
- Traffic jam...

### Possible energy savings **from 10% to 30%** on reinforcement lighting

### **Maintenance management**

- CLO
- Operating time
- Power consumption monitoring



#### Lower speed imposed or measured



# **Tunnel lighting LED guidance beacon**



Thanks to its 12 LEDs on either side, the BJ guidance beacon acts as a visual guide both in normal conditions and when there is smoke due to a fire. A direct 230 V power supply is also possible – in which case a transformer is integrated.

### PHOTOMETRY



#### Sign beacon with amber-coloured LED

This table shows that the maximum intensity is reached in a 4° angle of vision, which corresponds to the position of motorists in normal traffic conditions, or of pedestrians who are heading towards emergency exits.

#### CIE193:2010

# שאלות ? 🕲